Bound on the Weights of a Neural Network Under Nesterov’s Ac-
celerated Gradient Flow

The following is a derivation of a bound on the weights of a vanilla neural network under Nesterov’s Ac-
celerated Gradient Flow (the continuous version of Nesterov’s Accelerated Gradient Descent). Finding such a
bound was stated as an “open question” in Gluch and Urbanke’s “Noether” paper (https://arxiv.org/abs/2104.05508).
The following derivation assumes familiarity with their paper:
We start with “conservation law” for Nesterov’s Accelerated Gradient Flow:
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Notice that the second term can be expressed as a derivative of ||[W")||2 — ||[W(+D)|2.
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Next, we can perform integration by parts on the first term (showing just layer (h) for simplicity).
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Hence, equation (3) becomes
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Now, note that
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For simplicity, let o = |[[IW®||2, — ||[W#+D||2. Then,
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Next, acknowledge that
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When summed across all layers, the quantity on the right is simply the Hamiltonian of the system.
Moreover, the Hamiltonian is decreasing,
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It follows, then, that H < H,. Hence,
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Here, we can make the change of variables:
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This gives
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We can now apply Gronwall’s Inequality, which yields
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If we set t, = 0, then
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Or, if we note that Ho = L(w(0)) — L* when the velocities are initialized at 0, we arrive at
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which looks a lot like the bound that was derived for the case of Newtonian dynamics. The absolute value
comes in by observing the symmetry of the problem (e.g. by defining « by its negative and thus achieving
a lower bound on the original «).



