
Bound on the Weights of a Neural Network Under Nesterov’s Ac-
celerated Gradient Flow

The following is a derivation of a bound on the weights of a vanilla neural network under Nesterov’s Ac-
celerated Gradient Flow (the continuous version of Nesterov’s Accelerated Gradient Descent). Finding such a
bound was stated as an “open question” in Gluch and Urbanke’s “Noether” paper (https://arxiv.org/abs/2104.05508).
The following derivation assumes familiarity with their paper:

We start with “conservation law” for Nesterov’s Accelerated Gradient Flow:〈
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Ẇ (h)

〉
−
〈
W (h+1), Ẅ (h+1) +
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Notice that the second term can be expressed as a derivative of ||W (h)||2F − ||W (h+1)||2F :

t
(〈
W (h), Ẅ (h)
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)
= 0 (3)

Next, we can perform integration by parts on the first term (showing just layer (h) for simplicity).∫ 〈
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∑
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∑
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Hence, equation (3) becomes
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Now, note that 〈
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〉
t =

d

dt

(
1

2
||W (h)||2t

)
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2
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Therefore,
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dt2
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||Ẇ (h)||2 − ||Ẇ (h+1)||2
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For simplicity, let α = ||W (h)||2F − ||W (h+1)||2F . Then,

d2

dt2
(tα) + α̇ = 2 t

(
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)
(12)
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t
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Next, acknowledge that
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When summed across all layers, the quantity on the right is simply the Hamiltonian of the system.
Moreover, the Hamiltonian is decreasing,

Ḣ = −3

t
||ω̇||2 (15)

It follows, then, that H ≤ H◦. Hence,

α̈+
3

t
α̇ ≤ 4H◦ (16)

α̈ ≤ −3

t
α̇+ 4H◦ (17)

Here, we can make the change of variables:
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β = α̇−H◦t (18)

β̇ = α̈−H◦ (19)

This gives

β̇ ≤ −3

t
β (20)

We can now apply Gronwall’s Inequality, which yields

β ≤ β(t◦)e
∫ t
t◦(− 3

t )dt (21)

β ≤ β(t◦)

(
t◦
t

)3

(22)

If we set t◦ = 0, then

α̇−H◦t ≤ 0 (23)

α(t)− α(0) ≤ 1

2
H◦t

2 (24)
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2
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Or, if we note that H◦ = L(ω(0))− L∗ when the velocities are initialized at 0, we arrive at

[
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∣∣∣||W (h)(t)||2F − ||W (h+1)(t)||2F
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2
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which looks a lot like the bound that was derived for the case of Newtonian dynamics. The absolute value
comes in by observing the symmetry of the problem (e.g. by defining α by its negative and thus achieving
a lower bound on the original α).
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